Sepsis mortality prediction with the Quotient Basis Kernel
نویسندگان
چکیده
OBJECTIVE This paper presents an algorithm to assess the risk of death in patients with sepsis. Sepsis is a common clinical syndrome in the intensive care unit (ICU) that can lead to severe sepsis, a severe state of septic shock or multi-organ failure. The proposed algorithm may be implemented as part of a clinical decision support system that can be used in combination with the scores deployed in the ICU to improve the accuracy, sensitivity and specificity of mortality prediction for patients with sepsis. METHODOLOGY In this paper, we used the Simplified Acute Physiology Score (SAPS) for ICU patients and the Sequential Organ Failure Assessment (SOFA) to build our kernels and algorithms. In the proposed method, we embed the available data in a suitable feature space and use algorithms based on linear algebra, geometry and statistics for inference. We present a simplified version of the Fisher kernel (practical Fisher kernel for multinomial distributions), as well as a novel kernel that we named the Quotient Basis Kernel (QBK). These kernels are used as the basis for mortality prediction using soft-margin support vector machines. The two new kernels presented are compared against other generative kernels based on the Jensen-Shannon metric (centred, exponential and inverse) and other widely used kernels (linear, polynomial and Gaussian). Clinical relevance is also evaluated by comparing these results with logistic regression and the standard clinical prediction method based on the initial SAPS score. RESULTS As described in this paper, we tested the new methods via cross-validation with a cohort of 400 test patients. The results obtained using our methods compare favourably with those obtained using alternative kernels (80.18% accuracy for the QBK) and the standard clinical prediction method, which are based on the basal SAPS score or logistic regression (71.32% and 71.55%, respectively). The QBK presented a sensitivity and specificity of 79.34% and 83.24%, which outperformed the other kernels analysed, logistic regression and the standard clinical prediction method based on the basal SAPS score. CONCLUSION Several scoring systems for patients with sepsis have been introduced and developed over the last 30 years. They allow for the assessment of the severity of disease and provide an estimate of in-hospital mortality. Physiology-based scoring systems are applied to critically ill patients and have a number of advantages over diagnosis-based systems. Severity score systems are often used to stratify critically ill patients for possible inclusion in clinical trials. In this paper, we present an effective algorithm that combines both scoring methodologies for the assessment of death in patients with sepsis that can be used to improve the sensitivity and specificity of the currently available methods.
منابع مشابه
A quotient basis kernel for the prediction of mortality in severe sepsis patients
In this paper, we describe a novel kernel for multinomial distributions, namely the Quotient Basis Kernel (QBK), which is based on a suitable reparametrization of the input space through algebraic geometry and statistics. The QBK is used here for data transformation prior to classification in a medical problem concerning the prediction of mortality in patients suffering severe sepsis. This is a...
متن کاملSeparating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir
The prediction of lithology is necessary in all areas of petroleum engineering. This means that to design a project in any branch of petroleum engineering, the lithology must be well known. Support vector machines (SVM’s) use an analytical approach to classification based on statistical learning theory, the principles of structural risk minimization, and empirical risk minimization. In this res...
متن کاملPrediction of Sepsis Due to Acinetobacter Infection in Neonates Admitted to NICU
Background and Aim: Sepsis is the most important disease in the first 28 days of life and one of the main causes of infant mortality in the intensive care unit. Its definitive diagnosis is possible by performing blood culture. Neonatal sepsis can be a clinical sign of nosocomial infections that are often resistant to antibiotics. Therefore, the purpose of this study was to create and evaluate a...
متن کاملTemporal Features and Kernel Methods for Predicting Sepsis in Postoperative Patients
Objective: Sepsis represents a major factor in morbidity and mortality in postoperative patients. The systemic inflammatory response syndrome (SIRS) criteria are binary statistics used to identify patients with sepsis, and are based on four physiological variables: body temperature, heart rate, breathing rate, and white blood cell count. However, the SIRS criteria have been criticized for havin...
متن کاملOnl_Er_jah3_1068 1..8
Methods and Results-—A secondary analysis from a prospective inception cohort included all children having congenital heart disease surgery done at ≤6 weeks of age with cardiopulmonary bypass at the Western Canadian referral center from 1996 to 2009. Follow-up at the referral center determined the primary outcomes at 4.5 years with full-scale, performance, and verbal intelligence quotients on t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Artificial intelligence in medicine
دوره 61 1 شماره
صفحات -
تاریخ انتشار 2014